\(U_T=\sum_[t=T]d_tU(x_t)\)
We have:
\(U_T=\sum_[t=T]^{\infty }d_tU(x_t)\)
\(d_t=(1+\delta )^t\)
\(U_T=\sum_[t=T]^{\infty }(1+\delta )^tU(x_t)\)
\(\delta\) is the discount rate.
We have:
\(U_T=\sum_[t=T]^{\infty }d_tU(x_t)\)
\(d_t=\dfrac{1}{1+kt}\)
\(U_T=\sum_[t=T]^{\infty }\dfrac{1}{1+kt}U(x_t)\)
\(k\) is the discount parameter.
We have:
\(U_T=\sum_[t=T]^{\infty }d_tU(x_t)\)
\(d_0=1\)
\(d_t=\beta \delta^t\)
\(U_T=U(x_0)+\sum_[t=T+1]^{\infty }\beta \delta ^tU(x_t)\)
\(\delta\) is the discount rate.
\(u_{t}=f(x_t)\)
\(U_{t}=\sum_{i=t}u(x_i)d^i\)