Decision and game theory

Adam Boult (www.bou.lt)

July 12, 2025

Contents

Preface

I Decision theory under certainty
1 States and accentuators
2 Discrete choice

3 Continuous choice

II Intertemporal decision theory under certainty
4 States and deterministic environments
5 Intertemporal decision making

6 Planning

IIT Decision theory under known uncertainty
7 Lotteries and risk aversion

8 Fully observable Markov Decision Processes (MDP)

IV Decision theory under unknown uncertainty

9 Decision making with unknown uncertainty

10 Sensors and Partially Observable Markov Decision Processes

(POMDP)

18
19
20

22

25
26

29

32

33

34

CONTENTS

11 Reinforcement learning
12 Control theory

13 Active learning

V Game theory under certainty
14 Simultaneous games

15 Sequential games

16 Deep sequential games

17 Repeated episodic games

18 Tree search

VI Game theory under uncertainty
19 Games with imperfect or incomplete information

20 Stochastic games

VII Multi-agent systems

36
38

39

40
41
44
46
50

51

52
53

54

55

Preface

This is a live document, and is full of gaps, mistakes, typos etc.

Part 1

Decision theory under
certainty

Chapter 1

States and accentuators

1.1 Introduction

Chapter 2

Discrete choice

2.1 Introduction

Chapter 3

Continuous choice

3.1 Axioms

3.1.1 Choice set

Economic agents face options from some set. This could be consumption choices,
numbers of hours to work, or how much capital to invest in at a factory.

Utility functions
Calculating choices: Unrestricted choices

The choice of an agent is the selection which corresponds to the highest value
of the utility function. Consider:

f=2@x-172-10

We can easily calculate that even if the agent can choose any real number =z,
they will chose 1.

This approach can be used if there are not meaningful constraints, or those con-
straints are implicit in the utility function. For example a firm can be modelled
as profit maximising, where profit is a function of revenue and costs, with a
single maximising value.

Other agents, such as a consumers, may instead have utility over consumption
and leisure, and a separate constraint over this. This could be solved using
simultaneous equations, but such an approach is not always desirable.

CHAPTER 3. CONTINUOUS CHOICE 8

3.1.2 Complete preferences

Axiom 2: An economic agent has preferences across all pairs of ele-
ments of the choice set

Where an agent prefers one option to another, we say this choice is preferred to
the other. We can show this formulaically. If a is preferred to b then:

a>b

Alternatively b may be preferred to a.

a<b

Finally an agent may be indifferent to the choices.
a~b

We use can additional symbols to denote an agent prefers or is indifferent be-
tween options:

a>b
a=<b
Note that if:
a>b
And:
a=<b
Then:
a~b

For a set of choice, we want the agent to have preferences defined across possible
subsets — the power set.

Add symbols for choice across a set. include symbols for choice of a set, x
=c(a,b,utility)

a;b etc only for pairwise, but preferences are across more than that

Discussion of repeated. agents don’t choose the same thing each time, interpre-
tation?

3.2 Choices onto R! space

3.2.1 Transitivity
Axiom 3: Transitivity

If a <b,and b < ¢, then a < c.

CHAPTER 3. CONTINUOUS CHOICE 9

For example an agent is offered apples or bananas, and prefers apples, and then
bananas or carrots, and chooses bananas. If the agent is then offered apples or
carrots, they axiom of transitivity says they chould choose apples.

This is not always observed. For example if a firm offers two products, a cheap
a option and an expensive b option, then a preference may be:

a<b

The firm may add another product c slightly less expensive than b, with fewer
features, such if there were only 2 of the goods on sale:

a=<b
a<c
b<c
In particular, the last two imply the first, through the axiom of transitivity.

However with all three, the marketing effectively makes the consumer choose b,
by making it look like a better deal, so we observe:

a<s

e<c

c<s

Even though the elements have not changed.
Axioms of revealed preference

Add weak axiom of revealed preference

3.2.2 Independence of irrelevant alternatives

This is not always observed. For example if a firm offers two products, a cheap
a option and an expensive b option, then a preference may be:

a—<b

The firm may add another product c slightly less expensive than b, with fewer
features, such if there were only 2 of the goods on sale:

a<b
a<c
b<c
In particular, the last two imply the first, through the axiom of transitivity.

However with all three, the marketing effectively makes the consumer choose b,
by making it look like a better deal, so we observe:

a=<s

CHAPTER 3. CONTINUOUS CHOICE 10

e<c

c<s

Even though the elements have not changed.
Axioms of revealed preference

Add weak axiom of revealed preference

Strong axiom. can derive both (?)

3.2.3 Utility functions
Given that an agent chooses a selection from a set, how can we model this?

As the outcome of the function is one of the options available to the agent, we
can model it by putting a value number on each choice, and where the choice is
the selection with the largest value. We can do this by applying a function to
each element in the choice set.

This holds only if the agent is rational, that is, if they prefer A to B, they do
not switch to B if C is offered. This is due to the transitive properties of real
numbers. That is, if @ > b and b > ¢ then a > c.

If there are multiple elements with the largest value, then the agent would be
indifferent between these choices.

A simple example would be choosing the number of apples to consume.

If the agent always prefers more apples, we can have a function which is always
increasing when the number of apples increases.

This could be modelled by:

f==

f=(@—-1)2%+1

f=2-1)?2-10

f = cos(x)

f=c

These correspond to different preferences. In the first the agent prefers more
and more apples. In the second and third the agent prefers one apple. These
two formulas are monotonic transformations of each other and so are identical
for describing preferences. The fourth describes an infinite number of optimal

numbers of apples, but is unlikely to correspond to any real preferences, and
the fifth shows that agent doesn’t care about apples.

The last gives a real number as output, but doesn’t necessarily take in a real
number. Utility functions generally take real numbers, and always give out real
numbers.

CHAPTER 3. CONTINUOUS CHOICE 11

Solving

Option which maximises utility

3.3 Choices from R! space

3.3.1 Continuity
Transitivity

Axioms of continuity and transitivity
Continuous

Independence of irrelevant alternatives

Axiom 3: Continuity

In order to find optimal points for a utility function we want these functions to
be differentiable. This requires complete sets of choices. That is, if a if preferred
to b, points very close to a will also be preferred to b.

Agents often make choices discretely. How much of good = to consume, whether
to go on a holiday. We treat these as continuous. This is generally not prob-
lematic as agents choices become less discrete over longer time spans, and most
economic areas of interest do not rest on discrete consumption.

Marginal utility

We can differentiate our utility function with respect to a good. For example,
for:

f=2x-1)2-10

of _
Sx
This last term is the marginal utility of x, often shown as MU,.

4o —1

Solving
3.4 Choices from R" space

3.4.1 Indifference curves
Marginal rate of substitution

We can consider how much of one good a consumer is willing to give up to get
one of another.

Consider the utility function:

CHAPTER 3. CONTINUOUS CHOICE 12

U:f(xvy)

We can examine the change in utility following changes in inputs by taking the
total differential.

5f 5f

dU = Edm + @dy

We want to examine changes where dU is 0, so:
of of

—d —dy =

57 T + 5y y=20

of of . _

adx + @dy =0

MU dx + MUydy =0

dy MU,

de MU,

MU,
This is the form of the indifference curve. We refer to MiUx as the marginal
y
rate of substitution.

ADD GRAPH TO SHOW

Multiple choices

If the set of choices is more complex, say there are now apples and bananas, we
have to be more careful with a representative function.

The agent still prefers more apples and more bananas, but the following imply
different choices:

f=a?y?
f = In(z) +In(y)

In the first example, the agent would always swap an apple for a banana, if they
had more apples, whereas the opposite is true in the second case. Functional
form is important with multiple goods.

Solving

3.4.2 Specific function results
Examples of utility functions

Cobb Douglas

U=f(zy)

U = z2%”

MU, = az®1yf

CHAPTER 3. CONTINUOUS CHOICE

]
MU, = oy
x
xa
MU, = 65—
So:
yP
MUz - axl—a
MU, 2
ﬂyl_ﬁ
MU, oy
MU, Bz

Constant elasticity of substitution

U:f(z,y)

1
U= (ax’+ (1 - a)yb)g

13

1
1 ——1
MU, = gabxb_l(axb +(1—a)y®)b
1 ! 1
MU, = E(l —a)by®Haz® + (1 —a)y®) b
So:
1
Lo b1, b 0y !
MU, Eabx (ax® + (1 —a)y®)b
MU, T I
51— a)by*~Haz® + (1 —a)y®) b
MU, axb~!

MU, T - a)y

Constant elasticity of substitution

U=fzy)
U=ax+by

CHAPTER 3. CONTINUOUS CHOICE 14

Constant elasticity of substitution

U= f(zy)
U = aln(x) + B.In(y)
MU, =2
x
B
So:
MU, _ oy
MU, Bz

This is the same as Cobb Douglas. This reflects that the logarithmic function
preseres positive inflections.

3.5 Budget constraints

3.5.1 Budget constraints

Economic agents can choose elements from a set. We can define this set both
by what is included, and what is excluded.

An agent could choose inputs from an interval of real numbers. In this case the
finding the value which maximises the utility function across all real numbers
may not be a valid solution. For example an agent may optimally wish to
consume 20 apples, but only have 10.

Similarly an agent may be limited in combinations of choices. For example an
agent could choose how much to work and how much to enjoy leisure, but be
constrained by the amount of time in the day.

3.5.2 Budget optimisation
Calculating choices: Restricted choices

But what about where there is not clear maximum, like:

f=In(z) +In(y)

Here the agent would always prefer more of x and y. In practice agents are often
limited in their choices by budget constraints. That is, they cannot choose all
combinations of inputs.

Here we can use a Lagrangian. This maximises the value of a function subject
to constraints on inputs. This may not always be appropriate. The budget
constraint for an agent is often an inequality, for example consumption is less
than or equal to income, but the Lagrangian takes this to be binding.

CHAPTER 3. CONTINUOUS CHOICE 15

Fortunately, this can be resolved. The value of A in the Lagrangian corresponds
to the marginal effect of weakening the constraint. This is positive where the
constraint is binding on the agent, but not positive if it is not. Therefore if we
find the constraint is not binding, we can remove it from the optimisation.

Under some conditions, constraints will always be binding. These are useful for
specific cases of agents later.

In order for the constraint to be binding we make an additional assumption:

Condition 1: Non-satiation
The marginal utility of a good is always positive.

Note that we can “do economics” without this, but we want rely on Lagrangians.

Condition 2: Decreasing marginal utility

This ensures that we do not get corner solutions, for example consuming all
apples.

These two assumptions allow the use of the Lagrangian.

We know that for the Lagrangian the following is true:

6f of
oz _ 9y
99 9y
ox oy
of 4
dr _ Iz
of 9y
oy 0y

Where f is the utility function and g is the budget constraint.

Budget testing
Calculating choices: Restricted choices

But what about where there is not clear maximum, like:

f=n(z) +in(y)

Here the agent would always prefer more of x and y. In practice agents are often
limited in their choices by budget constraints. That is, they cannot choose all
combinations of inputs.

Here we can use a Lagrangian. This maximises the value of a function subject
to constraints on inputs. This may not always be appropriate. The budget
constraint for an agent is often an inequality, for example consumption is less
than or equal to income, but the Lagrangian takes this to be binding.

CHAPTER 3. CONTINUOUS CHOICE 16

Fortunately, this can be resolved. The value of A in the Lagrangian corresponds
to the marginal effect of weakening the constraint. This is positive where the
constraint is binding on the agent, but not positive if it is not. Therefore if we
find the constraint is not binding, we can remove it from the optimisation.

Under some conditions, constraints will always be binding. These are useful for
specific cases of agents later.

In order for the constraint to be binding we make an additional assumption:

Condition 1: Non-satiation
The marginal utility of a good is always positive.

Note that we can “do economics” without this, but we want rely on Lagrangians.

Condition 2: Decreasing marginal utility

This ensures that we do not get corner solutions, for example consuming all
apples.

These two assumptions allow the use of the Lagrangian.

We know that for the Lagrangian the following is true:

sf of
bz _ 0y
%9 g
ox oy
of 99
ox _ dz
of 99
oy oy

Where f is the utility function and g is the budget constraint.

3.5.3 Multiple restrictions
Calculating choices: Restricted choices

But what about where there is not clear maximum, like:

f=lin(z)+In(y)

Here the agent would always prefer more of x and y. In practice agents are often
limited in their choices by budget constraints. That is, they cannot choose all
combinations of inputs.

Here we can use a Lagrangian. This maximises the value of a function subject
to constraints on inputs. This may not always be appropriate. The budget
constraint for an agent is often an inequality, for example consumption is less
than or equal to income, but the Lagrangian takes this to be binding.

CHAPTER 3. CONTINUOUS CHOICE 17

Fortunately, this can be resolved. The value of A in the Lagrangian corresponds
to the marginal effect of weakening the constraint. This is positive where the
constraint is binding on the agent, but not positive if it is not. Therefore if we
find the constraint is not binding, we can remove it from the optimisation.

Under some conditions, constraints will always be binding. These are useful for
specific cases of agents later.

In order for the constraint to be binding we make an additional assumption:

Condition 1: Non-satiation
The marginal utility of a good is always positive.

Note that we can “do economics” without this, but we want rely on Lagrangians.

Condition 2: Decreasing marginal utility

This ensures that we do not get corner solutions, for example consuming all
apples.

These two assumptions allow the use of the Lagrangian.

We know that for the Lagrangian the following is true:

sf of
bz _ 0y
%9 g
ox oy
of 99
ox _ dz
of 99
oy oy

Where f is the utility function and g is the budget constraint.

3.5.4 77
Calculating choices: Restricted choices

But what about where there is not clear maximum, like:

f=lin(z)+In(y)

Here the agent would always prefer more of x and y. In practice agents are often
limited in their choices by budget constraints. That is, they cannot choose all
combinations of inputs.

Here we can use a Lagrangian. This maximises the value of a function subject
to constraints on inputs. This may not always be appropriate. The budget
constraint for an agent is often an inequality, for example consumption is less
than or equal to income, but the Lagrangian takes this to be binding.

CHAPTER 3. CONTINUOUS CHOICE 18

Fortunately, this can be resolved. The value of A in the Lagrangian corresponds
to the marginal effect of weakening the constraint. This is positive where the
constraint is binding on the agent, but not positive if it is not. Therefore if we
find the constraint is not binding, we can remove it from the optimisation.

Under some conditions, constraints will always be binding. These are useful for
specific cases of agents later.

In order for the constraint to be binding we make an additional assumption:

Condition 1: Non-satiation
The marginal utility of a good is always positive.

Note that we can “do economics” without this, but we want rely on Lagrangians.

Condition 2: Decreasing marginal utility

This ensures that we do not get corner solutions, for example consuming all
apples.

These two assumptions allow the use of the Lagrangian.

We know that for the Lagrangian the following is true:

6f of
oz _ 9y
99 9y
ox oy
of 4
dr _ Iz
of 9y
oy 0y

Where f is the utility function and g is the budget constraint.

Part 11

Intertemporal decision
theory under certainty

19

Chapter 4

States and deterministic
environments

4.1 Introduction

4.1.1 States
4.1.2 State evolution

For environment with no actors, transition model is matrix (for finite state).
Can multiply matrix n times to get state in n periods.

Transition matrix is perumation matrix. 1 or 0 only.

4.1.3 Static and dynamic environments

Does time stop to allow decisions. eg chess v driving.

4.1.4 Discrete and continuous environments

4.1.5 Episodic and sequential environments

20

Chapter 5

Intertemporal decision
making

5.1 Introduction

5.1.1 Intertemporal decision theory

Ur = Yt = T)dU ()

5.2 Types of discounting

5.2.1 Exponential discounting
Introduction

We have:

Ur = Yt =T)®dU(z;)

Exponential discounting
dy = (1+0)"
Ur = Z[t =T]>®(1+ 6§)'U(xy)

¢ is the discount rate.

5.2.2 Hyperbolic discounting
Introduction

We have:

21

CHAPTER 5. INTERTEMPORAL DECISION MAKING
UT = Z[t = T]OodtU(l't)

Hyerbolic discounting

1
14kt

Ur = Yt =T

dy

1+ ktU(xt)

k is the discount parameter.

5.2.3 Quasi-hyperbolic discounting
Introduction

We have:

Ur = 3t = T1°d,U(a4)

Quasi-hyperbolic discounting

do =1

dy = ot

Ur =Ul(zo) + 35t =T + 1]*B6'U (x+)

¢ is the discount rate.

5.3 Intertemporal economics

5.3.1 Intertemporal discounting
uy = f(x)

Ut = Zi:t u(.’Ll)dl

5.3.2 Euler’s equation

5.3.3 Hyperbolic discounting

22

Chapter 6

Planning

6.1 Introduction

6.1.1 Robotics

Robot exists in some configuration space By cartesian coordinates, angles and
lengths.

There are legal and illegal positions
Path planning is difficult
There are many degrees of freedom for complex robots

Higher dimension space makes solutions more difficult

6.2 Generating graphs

6.2.1 Visibility graphs

Visibility graph generates nodes from points on obstacles, current position and
goal. generate graph.

Use A* to solve

That algorithm is called VGRAPH

6.2.2 Robots with volume

What if robot takes up space?
Expand each obstacle by size of robot

23

CHAPTER 6. PLANNING 24

How to grow each obstacle? draw shape of robot around each obstacle. shape
is relative to point, so the growth is asymmetric if you choose a point for the
robot which is not in the middle. eg a vertex.

6.2.3 Rotation of robots

What about rotation? grow robot by shape of all rotations. but this is overly
conservative. will miss paths

Can do vgraph for each rotation, and switch between rotations. can choose 2
or 3 rotations

6.2.4 Voronoi path planning

Find paths as far as way from obstacles as possible
Divide plane in cells, with a cell around each obstacle
Within a cell, all points are closest to that obstacle
We move along the lines between cells

Overly conservative

Hard to compute in 3d

Small environmental changes can significantly change the graph.

6.2.5 Probabilistic Roadmap Planner
Generate random configuration of robot in space.
Find n positions which are legal

Link them using k nearest neighbours

Risk: graph not fully connected.

If so, can add extra nodes between breaks

6.3 Fields

6.3.1 Potential fields

Attracted to goal, repelled from obstacle.
Goal has 0 potential energy

Can use gradient descent to get to goal

Problem of local minimums

CHAPTER 6. PLANNING 25
If in a local minimum, can pertube by walking in a random direction to get out
of it.

Can use laser, sonar, to detect obstacles and get potential

Part 111

Decision theory under
known uncertainty

26

Chapter 7

Lotteries and risk aversion

7.1 Introduction

7.1.1 Lotteries
A choice may not have a certain outcome.

For example an action could have have 50

7.1.2 Von Neumann-Morgenstern utility theorem
We can model any risk preference as:

UL} = 32, piu(w:)

If the agent is risk neutral we can use:

u(z;) =z

If the agent is risk averse:

u(z;) = Inx;

If the agent is risk loving we can use:

u(a;) = 7

7.2 Absolute risk aversion

7.2.1 Absolute risk aversion

Given a utility function we can calculate the risk aversion.

U”("E)

Az) = —

27

CHAPTER 7. LOTTERIES AND RISK AVERSION 28

Constant Absolute Risk Aversion (CARA) is:
Alx)=c
u(zx) =1—e*®

Hyperbolic Absolute Risk Aversion (HARA) is:

1
Alz) = ar +b

Increasing and Decreasing Absolute Risk Aversion (IARA and DARA):

Risk aversion increase or decreases in x.

7.3 Relative risk aversion

7.3.1 Relative risk aversion

Absolute risk aversion is:

o _u”(x)
AW =~
R(z) = 2A(x)

B _scu”(x)
=)
7.4 Risk

7.4.1 Expected utility

If an agent faces an uncertain world they can make decisions under uncertainty.
For example, how would an agent value £10 relative to a 50

There are many different attitudes an agent could have — we need a form which
can capture these. A standard approach is expected utility.

We start by taking
Elu(z)] =
Subjective expected utility

7.4.2 Risk aversion
HARA Hyperbolic Absolute Risk Aversion
CRRA Constant Relative Risk Aversion

CHAPTER 7. LOTTERIES AND RISK AVERSION

7.4.3 Prospect theory

Cumulative prospect theory.

7.4.4 Knightian uncertainty
7.4.5 Bounded rationality

29

Chapter 8

Fully observable Markov
Decision Processes (MDP)

8.1 Stochastic environments

8.1.1 Markov chain recap

In a Markov chain we move from state to state randomly, following a transtion
matrix.

We have:
e S - the state space
e s; - the initial state

e P - the transition model

8.1.2 The value function

State payoffs

An agent gets a payoff which depends on the current state. We now have:
e S - the state space
e s; - the initial state
e P - the transition model

e R - the reward distribution

Discounting

We maximise the reward function using discounting.

30

CHAPTER 8. FULLY OBSERVABLE MARKOV DECISION PROCESSES (MDP)31
B2,y el

8.2 Markov Decision Processes (MDPs)
8.2.1 Markov Decision Processes (MDPs)

Introduction
Actions

In a MDP the agent can choose an action in each state. The action affects the
transition matrix.

This means that the rewards depends on the actions taken. We now have:
e S - the state space
e s; - the initial state
e A - the action space
e P - the transition model

e R - the reward distribution

8.2.2 Policies

The decision maker needs to decide which action to take. For a MDP we assume
that the agent knows:

e The current state
e The transition matrix
e The payoffs

If the current state is not known, we have a Partially Observable Markov Deci-
sion Process.

If the transition matrix or payoffs are not known we have a reinforcement learn-
ing problem.

8.2.3 The value function of a policy
Other

P(si11|H) = P(sty1|st = s,at = a) = Ps 4
Elr|H] = E[r¢|ss = s,ap = a] = Rs o

Optimal policies

Expected return is greater or identical to any other policy.

CHAPTER 8. FULLY OBSERVABLE MARKOV DECISION PROCESSES (MDP)32

8.3 Identifying policies

8.3.1 Solving Markov Decision Processes with linear pro-
gramming

8.3.2 The Bellman equation for Markov Decision Processes

8.3.3 Policy iteration

Policy iteration method

We start with a random policy.

We then loop:
¢ Evaluate the policy, using the Bellman equations.
e Update the policy

We update the policy by changing a to maximise:

vpi'(8) = 17 + YPrvx(s)

For example, if we have a policy of doing a in state s, we would see if we increase
the value if we change a to a’.

8.3.4 Value iteration
Value iteration method

Doesn’t directly calculuate policy. Doesn’t require inverting matrix.

8.4 Markov Decision Processes with infinite states

8.4.1 Markov Decision Processes with infinite states

Part IV

Decision theory under
unknown uncertainty

33

Chapter 9

Decision making with
unknown uncertainty

9.1 Introduction

9.1.1 Introduction

In practice we don’t know distribution.

9.1.2 Minimax

9.1.3 inimax regret

9.1.4 Robust decision making
9.1.5 Info-gap decision theory

9.1.6 Wald’s maximin model

34

Chapter 10

Sensors and Partially
Observable Markov
Decision Processes

(POMDP)

10.1 Partially observable environments

10.1.1 Hidden Markov Model (HMM) recap
10.1.2 Belief states

Inc initial knowledge of environment, page on storing observations

eg if position is right or left, at start belief state is both, if we try to move right,
we are definitely right.

what if actions differ between states? can consider only actions available to all
states if cost of illegal action is high

goal test: need to test all belief states

35

CHAPTER 10. SENSORS AND PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES (POMDP
10.2 Partially Observable Markov Decision Pro-
cesses

10.2.1 Partially Observable Markov Decision Processes (POMDP)
10.2.2 Policies for POMDPs
10.2.3 Value functions for POMDPs

max of linear terms?

10.2.4 Belief Markov Decision Processes
10.3 Identifying policies
10.3.1 Value iteration for POMDPs

Exponential in complexity for actions, observations?

10.3.2 Policy iteration for POMDPs
10.4 POMDPs with infinite states
10.4.1 POMDPs with infinite states

Chapter 11

Reinforcement learning

11.1 Reinforcement learning for Markov Deci-
sion Processes

11.1.1 Unknown MDP transition matrix
11.1.2 Exploration to understand the MDP

11.2 Temporal difference learning for Markov
Decision Processes

11.2.1 Temporal difference learning
11.3 Q-learning for Markov Decision Processes

11.3.1 Q-functions

We can’t use value functions, so we use Q-values instead.
Q(s,a) is the value of taking action a in state s.
Q(s,a) = Rs,q + YEs [maz,Q(s',d')].

assigned to every action/state combination), to real. h on ¢ tables, g-values

37

CHAPTER 11. REINFORCEMENT LEARNING 38

11.3.2 Value iteration for Q
11.3.3 e-greedy

11.4 Q-learning for large state Markov Decision
Processes

11.4.1 Function approximation for Q

eg NN from state/action to R

11.4.2 Quantisation of states

Shrink the number of states.

11.4.3 End-to-end reinforcement learning

11.4.4 Deep Q-Network (DQN)
11.5 Reinforcement learning for POMDPs

11.5.1 Unknown POMDP transition matrix
11.5.2 Stacking frames
11.5.3 Deep Recurrent Q-Network

Chapter 12

Control theory

12.1 Introduction

39

Chapter 13

Active learning

13.1 Introduction

40

Part V

Game theory under
certainty

41

Chapter 14

Simultaneous games

14.1 Introduction

14.1.1 Interaction between agents
Introduction

Previously actions map to states. Not now.

More intro

Previously we modelled utility as a function of variables in control of the agent,
or constants. We now add another type of term: variables controlled by other
agents.

Consider a simple pair of agents:
Uq = fa(Ta;Ya)

actionsg = {Za, Yo}

up = fo(T, yv)

actionsy = {xp, Yp }

Each agent’s decision does not affect the other agent. Consider now a utility
function:

Uq = fa(xaaya)
actions, = {xof fer;yof fer}
uy = fo(To, Yp)

actionsy = {accept; reject}

42

CHAPTER 14. SIMULTANEOUS GAMES 43

Where a offers a trade to b and b accepts or rejects. This is an example of a
sequential game. There are many types of game, with differing implications.

14.2 Simultaneous games

14.2.1 Simultaneous games
One round simultaneous games

Economic agents face options from some set. This could be consumption choices,
numbers of hours to work, or how much capital to invest in at a factory.

Consider the prisoner’s dilemma game: table.table.table-bordered thead tr th
th Silent th Tell thbody tr td Silent td (5,5) td (10,0) tr td Tell td (0,10) td (8,8)

In this game we have two agents who simultaneously choose
Let’s compare the decision to “tell” to the decision to be “silent”.

No matter what the other agent does, you are always better off choosing “tell”.
As a result we say the strategy “tell” strictly dominates “silent”.

If under some circumstances the agent is indifferent to the strategy and another,
then the strategy only weakly dominates.

So one way to solve a game is to choose dominating strategies. However an
agent may not have strictly dominating strategies. Another method it to rule
out strategies. If one strategy is strictly dominated for an agent, we can rule out
them choosing it. This may reveal strategies which are dominant one actions of
another agent can be ruled out.

If after iterations of this process we are left with only one strategy for each
agent, we say this is a Von Neumann solution, an analytic solution.

But what if there are still multiple options? Consider

table.table.table-bordered thead tr th th Opera th Tell tbody tr td Opera td
(10,5) td (0,0) tr td Football td (0,0) td (5,10)

And

table.table.table-bordered thead tr th th Rock th Paper th Scissors tbody tr td
Rock td (0,0) td (-1,1) td (1,-1) tr td Paper td (1,-1) td (0,0) td (-1,1) tr td
Scissors td (-1,1) td (1,-1) td (0,0)

In both of these there is no strategy which is always better to follow, even
weakly. But these games are very different. In the former, if agents agree to
both got to football, or both to opera, neither would be better off by defecting.
In the second example there is no such “Nash equilibrium”.

This is relevant for considering how to expand the game. In the former example
a couple can talk to each other and coordinate actions. For example one agent

CHAPTER 14. SIMULTANEOUS GAMES 44

could commit to going to the football, and the other agent would rationally join.
In the latter no such coordination is beneficial.

In the context of the game, the player can instead of choosing a pure strategy
such as “rock”, which may not always be appropriate, choose a mixed strategy.

1
For example a player could choose each of the 3 moves — of the time.

Nash equilibrium
Minimax strategy

Pure/mixed strategy
14.3 Hedonic games

14.3.1 Hedonic games
Introduction

Core stability

Chapter 15

Sequential games

15.1 Sequential games

15.1.1 Sequential games
Introduction

A game can have multiple rounds. For example an agent could offer a trade, and
the other agent could choose to accept or reject the trade. As later agents know
the other choices, and the earlier agents know their choices will be observed,
the games can change.

This doesn’t change games with pure strategies, but does affect those with mixed
strategies. For example, even if prisoners could see earch other in the prisoners
dilemma we would still get the same outcome. The last agent still prefers to
“tell”, and earlier agents know this and have no reason to not also “tell”.

But consider the football/opera game. Here the first mover is better off, and
there is a pure strategy, while in the rock paper scissors game the first mover
loses.

We can solve more complex games backwards. As the actions in the last round
of a game have no impact on others, they can be solved separately. Agents then
know what the outcome will be if an outcome is arrived at, and can treat that
“subgame” as a pay-off.

This method is known as backwards induction.

45

CHAPTER 15. SEQUENTIAL GAMES

One-round sequential games
Backwards induction
Zero-sum games

Subgame perfect equilibrium

Nash equilibrium

46

Chapter 16

Deep sequential games

16.1 Efficient search

16.1.1 Alpha-beta pruning

Pruning

Alpha-beta pruning

We can use pruning to reduce the number of nodes we search.

Alpha-beta pruning is a method for pruning. For each node we maintain two
values:

e Alpha. The lower bound on the maximum value of the children.
e Beta. The upper bound on the minimum value of the children.

Consider a player node with a score of 2, which has a neighbour. This neighbour
has a

We can know for sure we don’t need to explore some paths. for example consider
the mini player. there is a node we know the minimax value of a node is 2, and
there is a neighbour with one child with a value of 3, then

like DF'S, but keep track of:
e alpha (largest value for max across viewed children)
e initialise to +/ — o0
e initialise to oo
Propagate o and 8 down during search. prune where o > (8

Update a and 8 by propagating upwards.

47

CHAPTER 16. DEEP SEQUENTIAL GAMES 48

Only update alpha on max nodes, beta on min node

Ordering matters. if it’s worst, then no pruning. want an ordering with lots of
pruning p can: p + do shallow nodes p + order node so best are done first p +
domain knowledge heuristics (chess: capture, threaten, forward, backwards)

In practice can get time down to O(b%).

Use heuristic. deep blue uses 6000

16.1.2 Late Move Reductions (LMR)

Introduction

If the tree is explored in an efficient order alpha-beta pruning is more effective.

16.2 Partial evaluations

16.2.1 Heuristics
16.2.2 Identifying heuristics

16.3 Monte-Carlo Tree Search
16.3.1 Monte-Carlo Tree Search

Introduction
In search tree, each node has wins/total.
So start with just root in 0/0.
Algo:
e Start at root

e Take n choices to arrive at node which has not been explored (or until w/1
state)

play randomly from there

Back prob up (eg if win, then 1/1 for path back to root, or 0/1 if loss)

Wins/simulation count

So deterministic when choosing paths, up until play randomly.

16.3.2 Upper Confidence bound 1 applied to Trees (UCT)
Introduction

Way to choose paths

CHAPTER 16. DEEP SEQUENTIAL GAMES 49

w In N
n n
w 1s number of wins from node chosen

n is number of simulations from node chosen

N is number of simulations that have happened this many layers in

16.3.3 Defining board games
A board is described by:

e The layout of the board

e Whose turn it is

e Move history

These can be represented as nodes the root node being the start of the game,
and each branch being a move taken.

The number of possible nodes can quickly become very large, as in chess and
go.

16.4 Training with reinforcement learning

16.4.1 Reinforcement learning for combinatorial games
16.5 Other

16.5.1 Processing visual observations using neural net-
works
Introduction

We can use CNNs.

The output can be the values for each action.

16.5.2 Experience replay and catastrophic interference

16.5.3 Training with supervised learning

eg human chess games

CHAPTER 16. DEEP SEQUENTIAL GAMES 50

16.6 Other

16.6.1 Minimax

Games

Games are different to search. In a search algorithm we are looking for a se-
quence of actions. In a game we are looking for a reaction function. Unlike in
seach, there are other players.

We can use iterative deepening search.

Heuristics
The search space can be too big to look through all the nodes.

Rather than look for win states, we evaluate a non-terminal state using heuris-
tics.

Stochastic games

Can use expectminimax

For max node, return highest expectminimax of children

For min node —

For chance node, average of children weightted

Minimax: two players, max min

Max goes first, maximises results. min minimises results

A node’s minimax value is the best outcome against best player.
To find optimal strategy, depth first search of game tree.
Propagate minimax values up tree as terminal nodes are discovered
If a state is terminal, its value is utility of state

If a state is max node, highest value of children

If a state is min node, lowest value of children

Minimax is optimal, complete (for finite trees)

Chapter 17

Repeated episodic games

17.1 Finitely repeated games
17.1.1 Discounting
17.2 Infinitely repeated games

17.2.1 Strategies for the iterated prisoner’s dilemma
Tit-for-tat

Grim trigger

o1

Chapter 18

Tree search

18.1 Tree search algorithms

18.1.1 Depth-limited search

Depth-first search with a limit. This is useful if we know the solution is shallower
than limit .

Informed: No
Time:

Space:
Complete:
Optimal:

18.1.2 Iterative deepening depth-limited search

Does a depth-limited search to a layer L, increases the layer and starts again.
The repeats are a waste, but earlier layers are much cheaper.

Informed: No
Time:

Space:
Complete:
Optimal:

52

Part VI

Game theory under
uncertainty

53

Chapter 19

Games with imperfect or
incomplete information

19.1 Games with incomplete information
19.2 Games with imperfect information

19.3 Bayesian games

54

Chapter 20

Stochastic games

20.1 Bayesian games

20.1.1 Bayesian games

20.1.2 The common prior assumption
20.1.3 Signalling

20.1.4 Bayesian Nash equilibrium
20.1.5 Perfect Bayesian equilibrium
20.2 Stochastic games

20.2.1 Stochastic games

Generalisation of Markov Decision Processes.

20.2.2 Markov perfect equilibrium
20.2.3 Expectiminimax

20.3 Partially observable stochastic games

20.3.1 Partially observable stochastic games

Generalisation of reinforcement learning.

95

Part VII

Multi-agent systems

56

