For parametric models without dependent variables we have a form:
\(P(y| \theta )\)
And we have various ways of estimating \(\theta\).
We can write this as a likelihood function:
\(L(\theta ;y )=P(y|\theta)\)
In discriminative models we learn:
\(P(y|X, \theta )\)
Which we can write as a likelihood function:
\(L(\theta ;y, X )=P(y| X, \theta)\)
In generative models we learn:
\(P(y, X| \theta )\)
Which we can write as a likelihood function:
\(L(\theta ;y, X )=P(y, X|\theta)\)
We can use the generative model to calculate dependent probabilities.
\(P(y| X, \theta )=\dfrac{P(y, X| \theta )P(\theta )}{P(X, \theta )}\)
\(P(y| X, \theta )=\dfrac{P(y, X| \theta )}{P(X| \theta )}\)
For non-dependent models we had:
\(P(\theta |y)=\dfrac{P(y, \theta)}{P(y)}\)
\(P(\theta |y)=\dfrac{P(y| \theta)P(\theta )}{P(y)}\)
The bottom bit is a normalisation factor, and so we can use:
\(P(\theta |y)\propto P(y| \theta)P(\theta )\)
We have here:
Our prior - \(P(\theta )\)
Our posterior - \(P(\theta |y)\)
Our likelihood function - \(P(y| \theta)\)
We know:
\(P(\theta |y,X)=\dfrac{P(y, \theta, X )}{P(y, X)}\)
\(P(\theta |y,X)=\dfrac{P(y, X |\theta )P(\theta )}{P(y, X)}\)
The bottom bit is a normalisation factor, and so we can use:
\(P(\theta |y,X)\propto P(y, X| \theta)P(\theta)\)
We have here:
Our prior - \(P(\theta )\)
Our posterior - \(P(\theta |y,X)\)
Our likelihood function - \(P(y, X| \theta )\)
We know:
\(P(\theta |y,X)=\dfrac{P(y, \theta, X )}{P(y, X)}\)
\(P(\theta |y,X)=\dfrac{P(y| \theta, X )P(\theta, X)}{P(y, X)}\)
\(P(\theta |y,X)=\dfrac{P(y| \theta, X )P(\theta )P(X|\theta )}{P(y, X)}\)
We assume \(P(X|\theta )=X\) and so:
\(P(\theta |y,X)=\dfrac{P(y| \theta, X )P(\theta )P(X)}{P(y, X)}\)
The bottom bit is a normalisation factor, and so we can use:
\(P(\theta |y,X)\propto P(y| X, \theta)P(\theta)\)
We have here:
Our prior - \(P(\theta )\)
Our posterior - \(P(\theta |y,X)\)
Our likelihood function - \(P(y| X, \theta )\)
Our prior predictive distribution for \(P(y|X)\) depends on our prior for \(\theta\).
\(P(y|X)=\int_\Theta P(\mathbf y|X, \theta)P(\theta )d\theta\)
Once we have calculated \(P(\theta |\mathbf y, \mathbf X)\), we can calculate a posterior probability distribution for \(P(y|X)\).
\(P(y|\mathbf x, \mathbf y, \mathbf X )=\int_\Theta P(y|\mathbf x, \theta)P(\theta |\mathbf y, \mathbf X)d\theta\)