Generalising the binomial coefficient formula: The beta function

Introduction

Beta function

The beta function expand the binomial coefficient formula to the real (and complex) numbers.

We want to expand the binomial coefficient function.

\((\dfrac{n}{k})=\dfrac{n!}{k!(n-k)!}\)

We do this as:

\(B(x, y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\)