
Scheme and Common Lisp (compiled natively),

and dynamic typing

Adam Boult (www.bou.lt)

March 23, 2024



Contents

I Simple Lisp without functions 2

1 Functions and recursion 3

2 The Church-Turing thesis 5

3 Imperative and functional programming 6

4 Lisp 7

II Functions in Lisp 8

III Other Lisp 9

1



Part I

Simple Lisp without
functions

2



Chapter 1

Functions and recursion

1.1 Functions

1.1.1 Intro

Also called subroutines

1.1.2 Functions

We can call a function: y = f(x)

Here x are the local variables to be used.

However the global state may also affect the outcome, so we have:

y = f(x, z)

As a result, calling the same function twice with the same inputs can have
different outputs.

Side effects. If a function modifies the state outside of its local variables it has
side effects.

1.2 Recursion

1.2.1 Stack overflows

Write too many instructions to stack. can be caused by infinite recursion. eg
fun x() return x()).

3



CHAPTER 1. FUNCTIONS AND RECURSION 4

1.3 Other

1.3.1 Global and local variables



Chapter 2

The Church-Turing thesis

2.1 Storing knowledge

2.1.1 Introduction

2.2 The Church-Turing thesis

2.2.1 Introduction

5



Chapter 3

Imperative and functional
programming

3.1 Introduction

3.1.1 Imperative programming

In imperative programming, we say exactly what we want to happen. Each step
changes the state.

3.1.2 Functional programming

With functional programming, we write functions to be called. These functions
should not depend on the state, outside of local variables.

3.1.3 Side effects

If we remove side effects from all functions then functional programming has no
global variables which could affect the output.

6



Chapter 4

Lisp

7



Part II

Functions in Lisp

8



Part III

Other Lisp

9


