Analytic geometry and Euclidian space

Adam Boult (www.bou.lt)

March 23, 2024

Contents

I Analytic geometry 2
1 Points, lines and affine transformations 3
2 Euclidian transformations, lengths and angles 4
3 Volumes, perimeters and surface areas 8
4 2D polygons 9
5 3D polygons 11
6 Algebraic geometry and spheres 12

Part I

Analytic geometry

Chapter 1

Points, lines and affine transformations

1.1 Affine spaces

1.1.1 Lines
1.1.2 Parallel lines

Chapter 2

Euclidian transformations, lengths and angles

2.1 Linear metrics

2.1.1 Metrics

We defined a norm as:
$\|v\|=v^{T} M v$
A metric is the distance between two vectors.

$$
d(u, v)=\|u-v\|=(u-v)^{T} M(u-v)
$$

Metric space
A set with a metric is a metric space.

2.1.2 Inducing a topology

Metric spaces can be used to induce a topology.

2.1.3 Translation symmetry

The distance between two vectors is:
$(v-w)^{T} M(v-w)$
So what operations can we do now?
As before, we can do the transformations which preserve $u^{T} M v$, such as the orthogonal group.

But we can also do other translations
$(v-w)^{T} M(v-w)$
$v^{T} M v+w^{T} M w-v^{T} M w-w^{T} M v$
so symmetry is now $O(3,1)$ and affine translations

Translation matrix
$[[1, x][0,1]]$ moves vector by x.

2.2 Specific groups

2.2.1 The affine group

2.2.2 The Euclidian group

2.2.3 The Galilean group

2.2.4 The Poincaré group

2.3 Non-linear norms

2.3.1 L_{p} norms (p-norms)

L^{P} norm
This generalises the Euclidian norm.
$\|x\|_{p}=\left(\sum_{i=1}^{n}|x|_{i}^{p}\right)^{1 / p}$
This can defined for different values of p. Note that the absolute value of each element in the vector is used.

Note also that:
$\|x\|_{2}$
Is the Euclidian norm.

Taxicab norm

This is the L^{1} norm. That is:
$\|x\|_{1}=\sum_{i=1}^{n}|x|_{i}$

Angles

Cauchy-Schwarz

2.4 To linear forms

2.4.1 Norms

We can use norms to denote the "length" of a single vector.
$\|v\|=\sqrt{\langle v, v\rangle}$
$\|v\|=\sqrt{v^{*} M v}$

Euclidian norm

If $M=I$ we have the Euclidian norm.
$\|v\|=\sqrt{v^{*} v}$
If we are using the real field this is:
$\|v\|=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}$

Pythagoras' theorem

If $n=2$ we have in the real field we have:
$\|v\|=\sqrt{v_{1}^{2}+v_{2}^{2}}$
We call the two inputs x and y, and the length z.
$z=\sqrt{x^{2}+y^{2}}$
$z^{2}=x^{2}+y^{2}$

2.4.2 Angles

Recap: Cauchy-Schwarz inequality
This states that:
$|\langle u, v\rangle|^{2} \leq\langle u, u\rangle\langle v, v\rangle$
Or:
$\langle v, u\rangle\langle u, v\rangle \leq\langle u, u\rangle \dot{\langle } v, v\rangle$

Introduction
$\langle v, u\rangle\langle u, v\rangle \leq\langle u, u\rangle \dot{\langle v}, v\rangle$
$\frac{\langle v, u\rangle\langle u, v\rangle}{\|u\| \cdot\|v\|} \leq\|u\| \cdot\|v\|$

CHAPTER 2. EUCLIDIAN TRANSFORMATIONS, LENGTHS AND ANGLES7
$\frac{\|u\| \cdot\|v\|}{\langle v, u\rangle} \geq \frac{\langle u, v\rangle}{\|u\| \cdot\|v\|}$
$\cos (\theta)=\frac{\langle u, v\rangle}{\|u\| \cdot\|v\|}$

2.5 Other

2.5.1 Convex hulls

Chapter 3

Volumes, perimeters and surface areas

Chapter 4

2D polygons

4.1 Elementary geometry in 2 dimensions

4.1.1 Triangles

Area of a triangle
Circumference of a triangle
Sum of angles of a triangle
Angles in a triangle add to π.

4.1.2 Quadrilaterals

4.1.3 Oblongs

Area of an oblong
Circumference of an oblong

4.1.4 Squares

Area of a square
$A=l^{2}$
Circumference of a square
$C=4 l$

Angles in a square
Angles in a square sum to 2π.

4.1.5 Pentagon

4.2 Other
4.2.1 Border
4.2.2 Interior
4.2.3 Open
4.2.4 Closed
4.2.5 Self-intersecting polygon

Chapter 5

3D polygons

5.1 Elementary geometry in 3 dimensions

5.1.1 Pyramid
5.1.2 Cubes

Volume of a cube:
$V=l^{3}$
Surface area of a cube:
$A=6 l^{2}$

Chapter 6

Algebraic geometry and spheres

6.1 Circles

6.1.1 Defining circles
$x^{2}+y^{2}=r^{2}$
6.1.2 Area of a circle
$A=\pi r^{2}$
6.1.3 Circumference of a circle
$C=2 \pi r$

6.2 Spheres

6.2.1 Defining spheres
$x^{2}+y^{2}+z^{2}=r^{2}$
6.2.2 Volume of a sphere
$V=$
6.2.3 Surface area of a sphere
$A=$

