Algorithms for integer multiplication and division, and floating point arithmetic

Adam Boult (www.bou.lt)

March 23, 2024

Contents

I Algorithms for multiplication and division of integers with just addition and subtraction operations 2
II Simulation of integers outside the register range 3
III Representation and arithmetic of real numbers 4
1 Representation of real numbers, and addition and subtraction on them 5
2 Multiplication and division of real numbers 6
IV Numerical methods for real numbers 7
3 Arithmetic on real numbers 8
4 Calculating square roots of real numbers 9
5 Calculating π and e 10
6 Numerical integration 11
7 Trigonometric functions 12
8 Root-finding algorithms 13
V Numerical methods for complex numbers 14
9 Constructing the Mandelbrot set 15
VI Linear algebra 16
10 Identifying roots of linear equations 17
11 Identifying roots of non-linear equations 18
12 Discrete linear algebra 19
13 Linear algebra 20
14 Calculating convex hulls 21
15 Numerical methods for Ordinary Differential Equations (ODEs), including Euler's method 22
16 Numerical methods for Partial Differentiable Equations (PDEs) 23
17 Solving elliptic curves 24
VII Unconstrained optimisation 25
18 Optimising smooth functions with gradient descent 26
19 Extensions to gradient descent 30
20 Unconstrained optimisation of discrete functions 31
21 Unconstrained optimisation of non-differentiable real functions 32
VIII Constrained optimisation 33
22 Constrained optimisation: Linear, quadtratic and convex pro-gramming34

Part I

Algorithms for multiplication and division of integers with just addition and subtraction operations

Part II

Simulation of integers outside the register range

Part III

Representation and arithmetic of real numbers

Chapter 1

Representation of real numbers, and addition and subtraction on them

1.1 Introduction
1.1.1 Introduction

Chapter 2

Multiplication and division of real numbers

2.1 Introduction

2.1.1 Introduction

Part IV

Numerical methods for real numbers

Chapter 3

Arithmetic on real numbers

3.1 Representing real numbers

3.1.1 Binary floating point

store as two integers (x, y) evaluate as $x * 2^{y}$ this is binary floating point this means you get inaccuracies
eg $(0.1+0.2-0.3) * 10^{20}$ is not zero

3.1.2 Decimal floating point

alternative is decimal floating point store as $x * 10^{y}$

3.2 Operations on real numbers

3.2.1 Floor and ceiling
3.2.2 Powers, logarithms and exponentials

3.2.3 Overflow and underflow

The need to approximate real operations with pseudo real numbers. If we round small values to 0 , then $\ln 0, x / 0$ break. This is underflow

Chapter 4

Calculating square roots of real numbers

4.1 Introduction

4.1.1 Introduction

Chapter 5

Calculating π and e

5.1 Calculting π
5.2 Calculating e

Chapter 6

Numerical integration

6.1 Numerical integration

Chapter 7

Trigonometric functions

7.1 Trigonomic functions

Chapter 8

Root-finding algorithms

Part V

Numerical methods for complex numbers

Chapter 9

Constructing the Mandelbrot set

9.1 Introduction

Part VI

Linear algebra

Chapter 10

Identifying roots of linear equations

10.1 Finding roots of linear equations

Chapter 11

Identifying roots of non-linear equations

11.1 Finding roots of non-linear equations

Chapter 12

Discrete linear algebra

12.1 Linear programming with integers

Chapter 13

Linear algebra

13.1 Linear operations

13.1.1 Representing matrices
13.1.2 Vectors and matrices
13.1.3 Addition
13.1.4 Multiplication
13.1.5 Inverse
13.1.6 Transpose
13.1.7 Scalar multiplication
13.1.8 Matrix decomposition
13.1.9 Broadcasting

Loosen standards, can do addition subtraction if one matrix is $1 \times n$.

13.2 Linear programming

Chapter 14

Calculating convex hulls

Chapter 15

Numerical methods for
Ordinary Differential
Equations (ODEs), including Euler's method

Chapter 16

Numerical methods for Partial Differentiable Equations (PDEs)

Chapter 17

Solving elliptic curves

Part VII

Unconstrained optimisation

Chapter 18

Optimising smooth functions with gradient descent

18.1 Gradient descent

18.1.1 Gradient descent

18.1.2 What is gradient descent?

Rather than solve a normal equation, gradient descent takes the loss function, and takes the derivative of the loss function with respect to each parameter.
Small adjustments are then made to the parameters, in the direction of the steepest derivative, resulting in better parameters.

As derivative term gets smaller, convergance happens. The largest changes to the parametres occurs early on in the algorithm.

Can stop if not lowering by much

18.1.3 Local minima

Gradient descent is not guaratneed to arrive at a global minimum. For some loss functions, there will be multiple local minima, and gradient descent can end up in the wrong one.

Linear regression does not have this issue.
As a result, when we create functions with loss functions, convextity is very important. If the loss space is convex, then we will not get stuck in a local
minima.

18.1.4 Momentum gradient descent

Batch gradient descent

$:=$ used to denote an update of variable. Used in programming, eg $\mathrm{x}=\mathrm{x}+1$.
$\theta_{j}:=\alpha \frac{\delta}{\delta \theta_{j}} J\left(\theta_{0}, \theta_{1}\right)$
α sets rate of descent.
$\theta 0:=\theta 0-\alpha / m \sum(h 0(x)-y)$
$\theta j:=\theta j-\alpha / m \sum(h 0(x)-y) x j$
Can check if j theta increasing, means bad methodology, lower alpha
Get run for x iterations, evaluate j (theta)
Can use matrices to do each step
Can check convergence by checking cost over last 1000 or so, rather than all
Smaller learning rate can get to better solution, as can circle drain for small samples

Slowly decreasing learning rate can get better solutions
$\alpha=$ const $1 /(i+\operatorname{cost} 2)$
Do gradient descent on all samples
The standard gradient descent algorithm above is also known as batch gradient descent. There are other implementations.

Mini-batch gradient descent

Use b samples on each iteration, b is parameter, between stochastic and batch
$b=2-100$ for example

Stochastic gradient descent

Do gradient descent on one (?!) sample only
Not guaranteed for each step to go towards minimum, but each step much faster

Stochastic gradient descent with momentum

The gradient we use is not just determined by the single sample, it is a moving average of past samples.

Epochs

This refers to the number of times the whole dataset has been run.

18.1.5 Adaptive learning rates (Adagrad, Adadelta, RMSProp, ADAptive Momentum (ADAM))

18.1.6 Adagrad

18.1.7 Adadelta

18.1.8 RMSProp

18.1.9 ADAptive Momentum (ADAM)

18.2 Differentiable on a single axis

18.2.1 Coordinate descent

18.3 Twice-differentiable functions

18.3.1 Algorithmic efficiency

An algorithm takes memory and time to run. Analysing these characteristics of algorithms can enable effective choice of algorithms.

Complexity is described using big-O notation. So an algorithm with parameters θ would have a time efficiency of $O(f(\theta)$ where $f(\theta)$ is a function of θ.
Generally we expect $f(\theta)$ to be weakly increasing for all θ. As we add additional inputs, these would not decrease the time or space requirements of the algorithm.

An algorithm which did not change complexity with inputs would have a constant as the largest term. So we would write $O(c)$.
An algorithm which increase linearly with inputs could be written $O(\theta)$.
An algorithm which increased exponentially could be written $O\left(e^{\theta}\right)$.
Complexity can differ between worst-case scenarios, best-case scenarios and average case scenarios.

We can describe logical systems by completeness (all true statements are theorems) and soundness (all theorems are true). We have similar definitions for algorithms.

An algorithm which returns outputs for all possible inputs is complete. An algorithm which never returns an incorrect output is optimal.

18.3.2 Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

18.4 Sort

18.4.1 Floating point

18.4.2 Integer

18.4.3 Tree path

18.4.4 Array

Eg 8 queens

18.4.5 Search tree

in search tree, each node has state which is used for test. could be ID of node (for path finding), path history and cost (for trav salesman)
frontier (not open list)
backward search. only possible if end state is clearly defined. eg maze. not clear if don't know eg 8 queens.
can do breadth first on them simultaneously?
problem has: initial state. actions, transition model
model $T(s, a)->s_{n}+1$. as in, given state and action, we have new state goal test on each state
path cost for each sucessor
search tree. we expand when testing action.
open lists in unexplored notes.
loopy paths. if we go $a->b$ don't need to go $b->a$ because if goal, not any closer, if util, higher cost.
redunant paths. if we've already been to c, no need to explore going there from somewhere else in goal
if already been to c at lower cost, no point for util
actions is function on state.
keep explored states in open list

Chapter 19

Extensions to gradient descent

Chapter 20

Unconstrained optimisation of discrete functions

Chapter 21

Unconstrained optimisation of non-differentiable real functions

21.1 Non-differentiable functions

21.1.1 Subgradient descent

21.1.2 Hill climbing

We initialise at some point in the parameter space.
We identifify nearby alternative points in parameter space, and move to the one with the most improvement.

Movement only occurs in one parameter at a time.

Part VIII

Constrained optimisation

Chapter 22

Constrained optimisation:
 Linear, quadtratic and convex programming

22.1 Linear programming
22.2 Quadratic programming
22.3 Convex programming

