
Statistics text, including large language models

Adam Boult (www.bou.lt)

March 23, 2024

Contents

I Applications for time series models 2

1 Data cleaning: Text 3

2 Text prediction 4

3 Text translation 5

4 Natural Language Processing (NLP) 6

II Linguistics 9

5 Comparative method 10

6 Internal reconstruction 11

7 Universal grammar 12

III Architectures for sequences 13

8 Recurrent Neural Networks (RNNs) and Long Short-Term Mem-
ory (LSTM) 14

9 Recurrent Neural Network (RNN) encoders and decoders 17

10 Attention in neural networks and Transformers, and Bidirec-
tional Encoder Representations from Transformers (BERT) and
Generative Pre-trained Transformers (GPT) 18

1

Part I

Applications for time series
models

2

Chapter 1

Data cleaning: Text

1.1 Cleaning categorial data

1.1.1 One Hot Encoding

1.2 Cleaning text data

1.2.1 Bag-of-words

1.2.2 N-grams

Introduction

We can add start and end of sentence markets. * and STOP

Generally remove punctuation

1.2.3 Feature hashing

3

Chapter 2

Text prediction

2.1 Text

4

Chapter 3

Text translation

3.1 Text

5

Chapter 4

Natural Language
Processing (NLP)

4.1 Other

4.1.1 Probabilistic language models

Introduction

Probabilistic language models can predict future words given a history of words.

This can be used for predictive text. For example if a user types ”Did you call
your” we may want to estimate the probability that the next word is ”child”.

We can state this problem:

P (child|did you call your)

By definition this is:

P (child|did you call your) =
P (did you call your child)

P (did you call your)

We can estimate each of these:

P (did you call your child) =
|did you call your child|

|5 word sentences|

P (did you call your) =
|did you call your|
|4 word sentences|

Data requirements

This needs a large corpus, which may not be practical.

6

CHAPTER 4. NATURAL LANGUAGE PROCESSING (NLP) 7

Additionallly, the words must be indexed, and not simply stored as a bag of
words.

Decomposition

We can decompose the probabilities using the chain rule.

P (did you call your child) = P (did)P (you|did)...P (child|did you call your)

P (w1, ..., wk) =
∏

k p(wk|w1, ..., wk−1)

N-grams

We can simplify the decomposition using the Markov assumption:

P (wk|w1, ..., wk−1) = P (wk|wk−1)

This is a 1-gram.

We can do this for n words back. This is an n-gram.

Smoothing

We can use smoothing to address small corpuses.

P (did you call your child) =
|did you call your child| + 1

|5 word sentences| + V

P (did you call your) =
|did you call your| + 1

|4 word sentences| + V

For some value V .

Perplexity

We can compare probabilistic language models using perplexity.

We can then choose the model with the lowest perplexity.

perplexity(w1, w2, ..., wn) = P (w1, w2, ..., wn)
−

1

n

We can expand this:

perplexity(w1, w2, ..., wn) =
∏

i P (wi|w1, ..., wi−1)
−

1

n

Depending on which n-gram we use we can then simplify this.

CHAPTER 4. NATURAL LANGUAGE PROCESSING (NLP) 8

4.1.2 Word2vec

4.1.3 Latent Semantic Analysis

4.2 Machine translation

4.2.1 Machine translation

Part II

Linguistics

9

Chapter 5

Comparative method

10

Chapter 6

Internal reconstruction

11

Chapter 7

Universal grammar

12

Part III

Architectures for sequences

13

Chapter 8

Recurrent Neural Networks
(RNNs) and Long
Short-Term Memory
(LSTM)

8.1 Simple recurrent neural networks

8.1.1 Simple Recurrent Neural Networks (RNNs)

Introduction

Recurrent Neural Networks (RNN) are an alternative to feedforward networks.

These have loops.

Motivation

We have inputs which are not independent. For example speech input, where
each input is a the recording for a length of time.

Unrolling RNNs

The activation unit takes the input, and an outcome from the previous activation
unit. It then performs its activation function.

This allows information to be kept across time.

However this degrades, and relevant information was from much earlier, it will
be lost.

14

CHAPTER 8. RECURRENT NEURAL NETWORKS (RNNS) AND LONG SHORT-TERMMEMORY (LSTM)15

8.1.2 Backpropagation Through Time (BPTT)

We can do backpropagation on the unrolled network, backpropagating over time.

8.2 Long Short-Term Memory (LSTM)

8.2.1 Long Short-Term Mmemory (LSTM)

Introduction

These are a more complex RNN architecture.

Cell state

Each cell has as an as input the cell state from the previous cell Ct−1

The LSTM cell updates the cell state to Ct and pushes it to the next cell.

Other inputs to the cell

We have xt, the input of the cell, and ht−1, the output of the previous cell.

Cell output and the output gate

We run an activation function on the cell state Ct to get a candidate output.

We multiply this by the outcome of the output gate to get the actual result.

The input gate

We create a candidate change to the state.

We multiply this by the input gate value, and add it to the state.

The forget gate

This is a multiplication factor. What % of the state should be removed?

CHAPTER 8. RECURRENT NEURAL NETWORKS (RNNS) AND LONG SHORT-TERMMEMORY (LSTM)16

8.3 Variants

8.3.1 Peephole LTSM

8.3.2 Gated Recurrent Units (GRUs)

8.4 Forecasting with recurrant neural networks

8.4.1 Introduction

8.5 Other

8.5.1 Attention and Neural Turing Machines

Chapter 9

Recurrent Neural Network
(RNN) encoders and
decoders

9.1 Recurrent Neural Network (RNN) encoders
and decoders

9.1.1 Recurrent Neural Network (RNN) encoders

Final output is the encoding.

The end of the sequence is identified through an End-Of-Sequence token.

seq2seq

9.1.2 Recurrent Neural Network (RNN) decoders

Introduction

We take the encoded vector and pass this through to the decoder. This spits
out decoded output.

As we output a word, the word (and previous words) are sent as inputs to the
following RNN cells.

Encoding the outputs

As we create outputs, we can pass this as an encoded vector in the target
language.

17

Chapter 10

Attention in neural
networks and Transformers,
and Bidirectional Encoder
Representations from
Transformers (BERT) and
Generative Pre-trained
Transformers (GPT)

18

